Skip to main content

Research Highlight: Kanatzidis

New semiconductor detector shows promise for medical diagnostics and homeland security

Security officials are tasked with preventing criminals from smuggling dangerous materials into a country, and detecting nuclear substances has been difficult and costly. Now Northwestern University researchers have developed new devices based on a low-cost material to aid in the detection and identification of radioactive isotopes.

Using cesium lead bromide in the form of perovskite crystals, the research team found they were able to create highly efficient detectors in both small, portable devices for field researchers and very large detectors. The results are more than a decade in the making.

Professor Mercouri Kanatzidis, who led the research, said that in addition to being less costly than typical devices, the new method for detecting gamma rays is also highly capable at differentiating between rays of different energies. This method allows users to identify legal versus illegal gamma rays. Detectors like these are critical for national security, where they’re used to detect illegal nuclear materials smuggled across borders and aid in nuclear forensics, as well as in medical diagnostics imaging.

The research was published in the journal Nature Photonics.

For more on the story read Northwestern Now

BACK TO RESEARCH HIGHLIGHTS

BACK TO NEWSLETTER 

Back to top